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FOREWORD 

This report was prepared for the Applied Mathematics Branch, 
Aeronautical Research Laboratory,  Directorate of Research,  Wright 
Air Development Center by Dr.  Paul R.   Rider,   Dr.  H.  Leon Harter, 
and Mrs.   Mary D.   Lum under Task 70418,   "Investigation of Analysis 
of Variance".    The authors wish to thank Mrs.   Geraldine K.  Campbell 
for her excellent typing of the report,  especially the difficult parts 
involving mathematical symbols and tabular matter. 

The work was performed at the request of Colonel Aldro Lingard, 
Chief of the Aeronautical Research Laboratory,  who expressed the 
opinion that there exists a need for an elementary exposition of the 
analysis of variance.    The objective is to present this technique,  a 
powerful statistical tool,  in a manner that will be directly useful to 
engineers and other scientists engaged in research and development 
at Wright Air Development Center,  as well as at other installations 
in the Department of Defense. 

This is the fourth of a series of reports,  a list of which follows. 
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(2) Harter,  H.  Leon; and Lum,  Mary D. , Partially Hierarchal 
Models in the Analysis of Variance,   WADC Technical Report 55-33. 

(3) (a) Bozivich,  Helen; Bancroft,   T. A. ; Hartley,  H. O. ; and 
Huntsberger,  David V. ,  Analysis of Variance: Preliminary Tests, 
Pooling,   and Linear Models,   WADC Technical Report 55-244,   Volume I, 
Preliminary Tests of Significance and Pooling Procedures for Certain 
Incompletely Specified Models. 

(b)    Wilk,   M.B. ; and Kempthorne,  O. ,  Analysis of Variance 
Preliminary Tests,  Pooling,  and Linear Models,  WADC Technical 
Report 55-244,   Volume II,   Derived Linear Models and Their Use in the 
Analysis of Randomized Experiments. 

(4) Rider, Paul R. ; Harter, H. Leon; and Lum, Mary D. , An 
Elementary Approach to the Analysis of Variance, WADC Technical 
Report 56-20. 

WADC TR 56-20 



ABSTRACT 

An introduction to the Analysis of Variance is given.    Several 
important experimental designs to which this statistical technique 
is applicable are discussed,  as are multiple comparison tests which 
can be used after the analysis of variance has been made.    Transfor- 
mations employed prior to analysis are also treated.    An extensive 
bibliography is to be found at the end of the report. 
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1. INTRODUCTION 

The Analysis of Variance is a statistical technique which 
separates the variation in a set of data into parts which are linear 
combinations of estimates of the components of variance (see next 
section) due to different factors.    After the variation has been so 
resolved,  the process compares the part of the variation which 
includes the effect due to a certain factor (or combination of factors) 
with the part which excludes the effect due to that factor.    If the 
former is of sufficiently greater magnitude than the latter,  then one 
can conclude that the factor under consideration has contributed 
significantly to the variation.    Thus,   is this manner,  the Analysis of 
Variance facilitates determining whether the factors under consider- 
ation have significantly influenced the variation in the data. 

2. DEFINITIONS 

In this section are given some definitions and certain symbols and 
notations which will be used throughout this report. 

Let x.,  Xy,   '' ' ,  x^. be a set of N values of a variable x.    Then 

the mean (more explicitly the arithmetic mean)   of this set is given by 

*   = (l/N)Sx, (1) 

where Sx indicates x    + x_ + • • •  + x^ ,  that is,  the sum of the x's. 

A measure of variability is provided by the variance of the x's, 
which is defined as 

s2 = (l/n)S(x-x)2 ,  n = N-l. (2) 

The quantity n is the number of degrees of freedom. 

Here it is one less than the number of x's. 

Example,    x,  =4,  x2 = 7,   x3 = 8,   x4 = 5. 

x  = (l/4)(4 + 7 +8+ 5) = 6. 

s
2   =   —^ [(4-6)2 + (7-6)2 + ( 8-6)2 + (5-6)2] = 10/3. 
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The variance is ordinarily more easily calculated by a formula 
equivalent to (2),  namely, 

2 ,   Ex2 - (Sx)2/N 
n (3) 

For the above example, 

and (3) gives 

as before. 

2x2 = 42 + 72 + 82+ 52 = 154, 

,2 .   154W/4   __ im 

Although in this example formula (3) does not shorten the 
calculation of a   ,  nevertheless,  in general it will be found more 
convenient than (2). 

It is appropriate at this point to define the standard deviation; 
it is   s,   the square root of the variance. 

3.    DECOMPOSITION OF THE VARIANCE 

As a simple example of the analysis of variance consider the data 
in Table 3. 1.    It might be imagined that these data,  which actually are 

Table 3. 1 

(1) (2) (3) 
5 6 10 
6 6 9 

'     4 3 8 
5 5 5 

Total 20 20 32 72 
Mean • 5 5 8 6 

fictitious,   represent the number of hours required before failure, for 
certain items that are being tested.    Suppose that the figures in a 
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given column are for items supplied by a specified factory.    The 
question which is to be answered is the following:   Are the products 
supplied by the three factories significantly different,  that is,  is the 
variation among the means of the three columns greater than that 
which would be expected to occur as a matter of chance? 

The first important point to be noted is that the total variation 
can be resolved into the variation within the columns and the variation 
of the column means about the general mean.    It is a matter of 
elementary algebra to prove that the sum of squares of deviations of 
all of the values from the general mean is equal to the sum of squares 
of deviations of their values from their respective column means plus 
the (weighted) sum of squares of deviations of the column means from 
the general mean.    (The weight used for a column mean is the number 
of values in the column.    These numbers are not necessarily equal. 
Here the weight of each column mean is four. )   We shall not prove 
this statement here but will verify it numerically for the present example. 

The sum of squares of deviations from the general mean is 

(5-6)2 + {6-6)2 + (10-6)2 + (6-6)2 + (6-6)2 + (9-6)2 

+(4-6)2 + (3-6)2 + ( 8-6)2 + (5-6)2 + (5-6)2 + (5-6)2 

= 1 + 0+16 + 0 + 0 + 9 + 4 + 9 + 4+ 1 + 1 + 1= 46. 

The sum of squares of deviations from the column means is 

(5-5)2 + (6-5)2 + (4-5)2 + (5-5)2 Column (1) 

+(6-5)2 + (6-5)2-K3-5)2 + (5-5)2 Column (2) 

+(10-8)2+(9-8)2 + (8-8)2+(5-8) Column (3) 

=0+1+1+0 + 1 + 1 + 4 + 0\+ 4 + 1 + 0 + 9 != 22. 

The weighted sum of squares of the column means from the general 
mean is 

4[(5-6)2 + (5-6)2 +(«-6)2 ] = 4(1 + 1 + 4) = 24. 

As a check we note that 22 + 24 = 46. 
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In practice these sums of squares of deviations,  usually called 
"sums of squares" for short,   will be calculated more easily by using 
the formula 

Sx2 - (Sx)2/N, (4) 

which is the numerator of (3).    Thus,  the total sum of squares is 

52 + 62 + 102 + 62 + 62 + 92 + 42 + 32 + 82 + 52 + 52+ 52 - (72)2/l2 

= 478 - 432 = 46. 

The sum of squares of column means is 

4(52 + 5    + 82) - (72)   111 = 24. 

Alternatively this can be calculated by using the totals of columns and 
the factor 1/4 instead of 4,  thus: 

^ [(20)2   + (20)2 + (32)2] - (72)2/12 = 24. 

The within-columns sum of squares is calculated by subtraction: 
46-24 = 22. 

4.    TESTING FOR SIGNIFICANCE 

It is assumed that each group of data in Table 3. 1 constitutes a 
random sample from an infinitely large set of values of hours-to- 
failure of items of the type being tested.    This infinitely large set of 
values is referred to as the population.    The variance of the popu- 
lation is denoted by  cr  . 

An estimate of <r    can be obtained in several ways.     The total sum 
of squares,  46,  can be divided by the number of degrees of freedom, 
12-1 = 11.     Or,   the column sum of squares,   24,   can be divided by the 
appropriate number of degrees of freedom,   which is one less than the 
number of columns,  that is,   3-1=2.    A third estimate can be obtained 
by dividing the within-columns sum of squares by the appropriate 
number of degrees of freedom.    There are 4 values in each column, 
consequently 4-1 = 3 degrees of freedom per column,   or a total of 

WADC TR 56-20 4 



3x3 = 9 degrees of freedom.    Each of these estimates is called a 
mean square.       It is the second and third estimates which are of 
greatest interest.    Results are summarized in Table 4. 1. 

Table 4. 1 
Source of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square 

Column means 
Within columns 

24 
22 

3-1 = 2 
3(4-1) = 9 

24/2 = 12 
22/9 = 2.44 

Total 46 12-1   = 11 

It will be noted that the sum of squares (as previously stated) and also 
the degrees of freedom,  but not the mean squares,  are additive.    Thus, 
24 + 22 = 46 and 2 + 9 = 11. 

Now let it be assumed that the variability of the product is the 
same in all of the factories,  in other words,  that the three columns 
in Table 3. 1 are random samples from populations with equal variances. 
Then a test can be made of the hypothesis that the variance of the 
column means is zero,   in other words that the population column means 
are equal,  which would mean in the present example that the average 
time to failure is the same for all three factories.    (This is sometimes 
called the null hypothesis. )    If this hypothesis is true,  then the mean 
square for column means should not be too different from the within- 
columns mean square.    If it is too much greater the hypothesis is 
contradicted and it may be concluded that there is more of a difference 
in the products put out by the three factories than can reasonably be 
attributed to chance.    One then states that the difference is significant 
(in the statistical sense).    The reader should be cautioned that a 
significant difference does not necessarily imply that the actual magni- 
tude of the difference is large.    On the contrary,  the magnitude may be 
extremely small.    It does indicate that the difference is of a causal 
nature and cannot be attributed to chance. 

To test the hypothesis one forms the ratio (sometimes called the 
variance ratio) 

F = 12/2.44 = 4.92. 

The mean square in the numerator of the ratio is based upon 2 degrees 
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of freedom,  that in the denominator upon 9 degrees of freedom. 
There are tables* which give the values of F that will be exceeded a 
certain per cent of the time.    Reference to such tables    shows that 
for 2 degrees of freedom in the numerator and 9 in the denominator, 
the value of F which will be exceeded 5 per cent of the time is 
F   nt. = 4. 26.    A value of F which exceeds F  Qg is said to be signifi- 

cant at the 5 per cent level.    Similarly,  the value of F whicji will be 
exceeded 1 per cent of the time is F  Ql =   8. 02.    A value of F which 
exceeds this is said to be significant at the 1 per cent level.    The 
value of F for this example is thus significant at the 5 per cent level 
but not at the 1 per cent level.    The conclusion is that the null hy- 
pothesis is contradicted and that there is some reason to suppose 
that there is a difference among the overall average qualities of the 
products of the three factories,  and not merely among the average 
qualities of the samples included in the experiment. 

5.    TWO-WAY CLASSIFICATION 

Let it now be supposed that the data of Table 1 are classified 
according to rows as well as columns.     Thus,   each row might indicate 
an individual testing machine,   so that,  for example,  the number 3 in 
column 2 and row 3 is the number of hours that were required for the 
item from factory 2 to fail on testing machine number 3. 

The totals and means of the rows,  as well as the totals and the 
means of columns,  are shown in Table 5. 1. 

Table 5. 1 

(1) (2) (3) Total Mean 
(1) 5 6 10 21 7 
(2) 6 6 9 21 7 
(3) 4 3 8 15 5 
(4) 

Total 
5 

20 
5 

20 
5 

32 
15 
72 

5 
24 

Mean 5 

Sned 

5 

ecor, 

8 

George 

18 

W. ,  Stat 

6 

•See, for example, istical Methods 
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The weighted sum of squares of deviations of the row means 
from the general mean is 

'      2 2 2 2 
3[(7-6)    +(7-6)    +(5-6)    +(5-6)   ] = 12. 

The weight 3 preceding the brackets is the number of values in each 
row.    This sum of squares can also be calculated as 

2        2        2        2 2 , 
3(7^ + 7    +5    + 5  ) - (72)   /12 = 12 

or, by using row totals instead of row means,  as 

|(212 + 212 + 152 + 152) - (72)2/12 = 12. 

(Cf.  preceding section. ) 

The sum of squares of deviations for column means plus that for 
row means is 12 + 24 = 36.     When this value is subtracted from the 
total sum of squares,  namely 46,  there is a residual of 10,  which 
will be referred to as the discrepance.      It is composed of interaction 
and error.     The interaction  is that part of the variation which is 
caused by the interplay of the factors at work; for example there 
might be a tendency of the product of a certain factory to test higher 
on a certain machine.    The error is that part of the variation which 
may be regarded as due to chance.    There is a formula by which the 
discrepance may be calculated directly, but it is easiest and simplest 
to obtain it by subtraction. 

Table 5, 2 can now be constructed.    It is like Table 4. 1 except that 
the analysis of variance has been carried further.    Note that the number 
of degrees of freedom 

Table 5. 2 
Source of Sum of Degrees of Mean 
Variation Squares Freedom Square 
Column means 24 3-1 = 2 24/2 = 12 
Row means 12 4-1 = 3 12/3 = 4 
Discrepance 10 (3-l)(4-l)   =6 10/6 = 1. 67 
Total 46 12-1    =11 

for discrepance can be obtained by multiplying the degrees of freedom 
for columns and for rows. 
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Significance tests can now be made only if it can be assumed 
that there is no interaction.    Possibly there is available some previ- 
ous information on this point and it is believed that this is a reason- 
able assumption.    If so,  the discrepance mean square is used as a 
standard of comparison. 

For columns, 

F = 12/1.67 = 7. 19. 

Tables show that for 2 degrees of freedom in the numerator and 6 in 
the denominator,  F  Q5 = 5. 14 and F   Q, = 10.92.    The value of 7. 19 

is thus significant at a level somewhere between the 5 per cent and 
the  1 per cent levels.    It is higher above the 5 per cent level than 
before,   strengthening the conclusion that the products of the three 
factories are different.    In general,   one should note that if the row 
effects are analyzed out,  the mean square of the comparison term 
might be so decreased (and the F-ratio consequently so increased) 
as to detect a significant difference in the columns which had not been 
apparent before. 

For rows, 

F = 4/1. 67 = 2.40. 

Since, for the degrees of freedom 3 and 6, tables show F  QC = 4. 76 

and F  Q, = 9. 78,  it may not be concluded that there is a row effect, 

that is,  a difference in the testing machines . 

6.   REPLICATIONS 

In the statistical experiment described in the preceding sections 
it would have been desirable to have more than one item tested from 
each factory by each machine.    The number of items so tested is 
referred to as the number of replications; thus,  if five items from 
each factory are tested on each machine we say that there are five 
replications.    Replications not only yield more accurate results 
(because the sample is larger), but they provide a means of testing 
the significance of the interaction,  which otherwise is impossible. 
The variation in the individual values in the various classes can be 
used as a standard of comparison. 
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Of course in the example cited above there would still be vari- 
ation among individual items,   since a test-to-failure is destructive, 
so perhaps a more appropriate example would have been one in 
which several measurements of hardness are made on items from 
different factories or sources of supply by different persons or with 
different instruments. 

As a numerical example consider Table 6. 1.    The data therein 
can be analyzed as were the data of Table 5. 1. 

Total Mean 

42 7 

36 6 

36 6 

30 5 

Table 6. 1 

5 6 10 
4 6 11 
9 12 21 

6 6 9 
5 4 6 

11 10 15 

4 3 8 
7 4 10 

11 7 18 

5 5 5 
4 6 5 
9 11 10 

Total 40 40 64 
Mean 5 5 8 

144 24 
18 6 

For the total sum of squares of the twelve averages   9/2 =4. 5, 
12/2 = 6,   21/2 = 10. 5,  etc. ,  is found 

2[(4. 5-6)2 + (6-6)2 + (10. 5-6)2 + (5. 5-6)2 + (5. 6)2 + (7. 5-6)2 

+ (5. 5-6)2 + (3. 5-6)2 + (9-6)2 + (4. 5-6)2 + (5. 5-6)2 + (5-6)2] 

= 2(2.25 + 0 + 20. 25 + 0.25 + 1+2.25 

+ 0. 25 + 6. 25 + 9 + 2. 25 + 0. 25 + 1) = 2(45) = 90. 
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Short-cut computation: 

i (92 + 122 + 212 + ll2 + 102 + 152 + ll2 + 72 + 182 

+ 92 + ll2 + 102) - (144)  /24 

- 1 - j (1908) - 864 =90. 

For the column sum of squares is obtained 

8[(5-6)2+ (5-6)2 +(8-6)2]  =48. 

Short-cut computation: 

A  (402+ 402+  642) - (144)2/24 

= A (1600 + 1600+ 4096) - 864 =48. 

Similarly, for rows, 

6[(7-6)2 + (6-6)2 + (6-6)2 + (5-6fy= 12. 

Short-cut computation: 

-1 (422 + 362 + 362 + 302) - (144)2/24 

= i (1764 + 1296 + 1296 + 900) - 864 
6 

= -r   (5256) - 864= 876 - 864= 12. 

The interaction sum of squares is 

90 - 48 - 12 =30 
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So far use has not been made of the individual values.    The total 
sum of squares if they are taken into consideration is 

(5-6)2 + (4-6)2 * (6-6)2 + (6-6)2 + (10-6)2 + (11-6)2 

+(6-6)2 + (5-6)2 + (6-6)2 + (4-6)2 + (9-6)2 + (6-6)2 

+ (4-6)2 +(7-6)2 + (3-6)    +(4-6)    +(8-6)     +(10-6) 

+ (5-6)2 + (4-6)2 + (5-6)2 + (6-6)2 + (5-6)2 + (5-6)2 

= 1+4+0 + 0+16 + 25+0 + 1 + 0 + 4 + 9 + 0 
+ 4+1 + 9+4 + 4+16+1+4+1+0+1 + 1   =   106. 

Short-cut computation: 

52 + 42 + 62 + 62 + 102 + ll2 + 62 + 52 + 62 + 42  + 92 + 62 

?        ?        2        2        2 7        1        2.        2.        Z        2.        Z 
+ 4^ + 7    + 3    +4* + 8    + 1(T +5    +4^ + 5    +6    +5    +5 

-(144)2/24 =    106. 

There is still a sum of squares unaccounted for: 

106 - 48 - 12 - 30 =16. 

Actually this is the sum of squares of the deviations of the indi- 
vidual values from the means of their respective classes.    This is 
sometimes termed the error sum of squares.    It is 

(5-4. 5)2 + (4-4. 5)2 + (6-6)2 + (6-6)2 + (10-10. 5)2 + (11-10. 5)2 

+ (6-5. 5)2 + (5-5. 5)2 + (6-5)2 + (4-5)2 + (9-7. 5)2 + (6-7. 5)2 

+ (4-5. 5)2 + (7-5. 5)2 + (3-3. 5)2 + (4-3. 5)2 + (8-9)2 + (10-9)2 

+ (5-4. 5)2 + (4-4. 5)2 + (5-5. 5)2 + (6-5. 5)2 + (5-5)2 + (5-5)2 

= 0.25+0.25 + 0 + 0 + 0.25 + 0.25 + 0.25 + 0.25+1+1 

+ 2. 25 + 2.25 

+ 2.25 + 2.25 + 0.25 + 0.25+1 + 1 + 0.25 + 0.25 + 0.25 
+ 0 + 0 =16. 
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These results have been placed in an analysis of variance 
table,   Table 6. 2,  in which the following abbreviations are employed. 

SS     =    sum of squares, 
DF   =    degrees of freedom, 
MS   =    mean square. 

Table 6. 2 
Source SS DF MS 
Columns 48 3-1      =    2 48/2   = 24 
Rows 12 4-1      =    3 12/3   = 4 
Interaction 30 (3-l)(4-l)   =    6 30/6   = 5 
Error 16 12(2-1)     = 12 16/12 = 1.33 
Total 106 24- 1 = 23 

If now the error mean square is used as the denominator or com- 
parison term in forming F-ratios, the results listed in Table 6. 3 are 
obtained. 

Table 6.3 
Source F( = Variance Ratio) F  05 F  01 
Interaction 
Columns 
Rows 

5/1.33     =    3.75 
24/1. 33  = 18.0 
4/1.33     =    3.0 

3. 00 
3. 88 
3.49 

4.82 
6.93 
5.95 

The F-ratio for interaction is significant at the 5 per cent level 
(but not at the 1 per cent level),  which would contradict the hypothesis 
that the effect of each machine is the same for all factories (and vice 
versa). 

The F-ratio for columns is now over two and one-half times the 
1 per cent value,  and the hypothesis of no difference between factories 
is much more strongly refuted than before.    The separating out of the 
interaction has thus provided a still more sensitive test. 

The F-ratio for rows is not significant. 

It has been tacitly assumed in the above example that both factories 
and machines are fixed factors (see next section). 
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7.    FIXED AND RANDOM FACTORS 

If the levels of a factor which are included in an experiment are 
considered to constitute the entire population of levels of that factor, 
the factor is said to be fixed.    If,  on the other hand,  the levels in- 
cluded in the experiment represent a random sample from an infinite 
population of such levels,  the factor is said to be random.    If the 
levels included in the experiment represent a random sample from 
a larger (but finite) population,  the factor is said to be semi-random. 
Only fixed and random factors will be discussed in this report. 

An experimental model in which all of the factors are fixed is 
called a fixed model.    A model in which all of the factors are random 
is called a random model.    A mixed model is one in which both fixed 
and random factors are included. 

For a fixed factorial model (all models considered so far have 
been factorial; see section 8 for definition),  all main effects and inter- 
actions in a replicated experiment are tested by using the mean square 
for error as the denominator of the F-ratio.    The reader will recall 
that this was done in the example of section 6. 

If,   on the other hand,  one of the factors had been random,  the other 
factor in this mixed model would have been tested by using the mean 
square for interaction as the denominator of the F-ratio.    In the 
example of section 6,  the experimenter was interested in the results 
of testing the product of three factories,  using a particular set of four 
machines,  and the effect of factories was tested by error.    Suppose 
now the four machines represent a random sample from a much larger 
population of machines.    Strictly speaking,  if the population is finite, 
machines should be considered to be semi-random,  but if the population 
size is quite large with respect to the sample size,  it can be considered 
to be infinite for all practical purposes,  and machines can be con- 
sidered random.    Now the effect of factories will be tested by inter- 
action; that is,  the F-ratio for factories will be 24/5 = 4. 8.    For 2 and 6 
degrees of freedom,  F   0c   = 5. 14.    Hence the effect of factories,  which 

was found to be significant at the 1 per cent level when machines were 
considered to be fixed,  is not significant even at the 5 per cent level 
when machines are considered to be random. 

To give these results a practical interpretation,  one can be quite 
sure that if all the product of the three factories were tested on these 
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same four machines,  a difference in overall factory means would be 
found.    However,   if the tests were made on an independent random 
sample of four machines,   one cannot predict what the results would 
be. 

If both factories and machines had been random in the example of 
section 6, both factors in this random model would have been tested 
by interaction.    Of course testing machines by interaction would have 
made no difference,   since the effect of machines is not significant 
when tested either by interaction or by error. 

8. FACTORIAL, HIERARCHAL AND PARTIALLY HIERARCHAL 
MODELS 

If the chosen levels of the various factors in an experiment are 
tried in all combinations,  the experimental model is said to be 
factorial.       As pointed out in section 7,  all of the models considered 
so far have been of this type.    If a different set of levels of a second 
factor is used for each level of a first factor, then the second factor 
is said to nest within the first factor,  and the model is said to be 
hierarchal. 

As an example of a two-factor hierarchal model,  consider an 
experiment designed to study the maximum true air speed (in hori- 
zontal flight at low altitude) of planes of different types.    Since each 
plane is of a definite type,  planes are said to nest within aircraft types. 
Since only particular aircraft types are involved,  aircraft types will 
be fixed.    Since one is interested not in specific planes, but in all 
planes of the given types,  the planes which will represent a given 
aircraft type should be chosen at random from the population of planes 
of that type.    (Certain difficulties arise in the case of fixed nesting 
factors,  which will not be discussed here. )   Replication is needed to 
make possible a test of the significance of planes within aircraft types. 
The data in Table 8. 1 represent the maximum true air speed on three 
passes of two planes each of two aircraft types. 

The total sum of squares is computed as follows (short-cut method): 

(450)2 + (460)2 + (440)2 + (400)2 + (430)2 + (400)  + (520) 

+ (560)2 +(540)2 + (570)2 + (590)2 + (580)2   -   (5940) 

12 
=   57300 . 
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Table 8. 1 
Aircraft Type 1 Aircraft Type 2 

Plane A Plane B Plane C Plane D 
450 400 520 570 
460 430 560 590 
440 400 540 580 

1350 1230 1620 1740 
2580 3360 

The short-cut computation for the sum of squares for aircraft 
types is: 

[(2580)2+ (3360)2]/6 - (5940)2/12 = 50700. 

The sum of squares for planes within type 1 is 

[(1350)2+ (1230)2]/3 - (2580)2/6= 2400. 

The sum of squares for planes within type 2 is 

[(1620)2+ (1740)2]/3 - (3360)2/6 =2400. 

Hence the sum of squares for planes within types is 

2400* 2400= 4800. 

The sum of squares for error is then found by subtraction to be 
57300 - 50700 - 4800 =1800. 

Since there are two aircraft types,  the number of degrees of 
freedom for aircraft types is 2-1 = 1.    Since there are two planes with- 
in each of two aircraft types, the number of degrees of freedom for 
planes within aircraft types is 2(2-1)= 2(1) =2.    Since there are three 
observations for each of four planes,  there are 4(3-1) =4(2) =8 
degrees of freedom for error.    Since there are 12 observations in all, 
the total number of degrees of freedom is 12-1 =11.    The same result 
is obtained by adding the degrees of freedom for the various effects, 
thus: 1 + 2+ 8 =11. 

These results,  together with the mean squares,  are summarized 
in Table 8.2. 

In a hierarchal model such as this,   the mean square for the nesting 
factor is used as the denominator of the F-ratio for testing the sig- 
nificance of the factor in which it nests.    The nesting factor itself is 

WADC TR 56-20 15 



Table 8.2 
Source of Variation SS DF MS 
Aircraft types 
Planes within types 
Error 

50,700 
4, 800 
1,800 

2-1     =    1 
2(2-1)    =    2 
4(3-1)   =    8 

50,700/1   =   50,700 
4,800/2   =    2,400 
1, 800/8  =         225 

Total 57, 300 12-1      =   11 

tested by error,  as shown in Table 8. 3. 

Table 8. 3 
Source of Variation F ( = Variance Ratio) F05 F.oi 
Aircraft types 
Planes within types 

50,700/2,400 = 21. 12 
2,400/  225    = 10.67 

18. 51 
4.46 

98.49 
8. 65 

The reader will note that,   although the F-ratio for aircraft types 
is nearly twice that for planes within types, the former is significant 
only at the 5 per cent level,  while the latter is significant at the 1 per 
cent level.    The reason for this apparent discrepancy lies in the 
number of degrees of freedom for the two tests.    These results show 
that there is some reason to doubt that the speed capabilities of the 
two aircraft types are equal,  and also strong reason to doubt that 
individual planes within the same aircraft type are homogeneous as 
to speed capability.    It should be stated that these data are entirely 
fictitious,  and are intended only as an illustration; no conclusions 
about actual planes should be drawn from them. 

If   an experimental model involves one or more nesting factors and 
also one or more factors used in all combinations,  it is called a 
partially hierarchal model.    If the above experiment is repeated at high 
altitude,  and the data for the two altitudes are considered together,  the 
resulting model is partially hierarchal,  with planes nesting within air- 
craft types but with altitudes occurring in all combinations with the 
other factors; that is,  each plane of each aircraft type is tried at each 
altitude.    The data in Table 8.4 represent the maximum true air 
speed on three passes of two planes each of two aircraft types (in 
horizontal flight) at high altitude. 

In order to facilitate the calculation of the sums of squares,  the 
data of Tables 8. 1 and 8.4 are summarized in Table 8. 5, where each 
entry represents the sum of three maximum true air speeds for a 
given plane at a given altitude. 

WADC TR 56-20 16 



Table 8. 4 

Aircraft Type 1 
Plane A Plane B 

480 
490 
470 

480 
440 
460 

1440 1380 
2820 

Aircraft Type 2 
'lane C Plane D 

570 600 
580 580 
560 590 

1710 
3480 

1770 

Table 8. 5 
Aircraft Type 1 Aircraft Type 2 

Altitude Plane A  Plane B Sum Plane C  Plane D Sum Total 
Low 
High 

1350     1230 
1440     1380 

2580 
2820 

1620     1740 
1710     1770 

3360 
3480 

5940 
6300 

Total 2790     2610 5400 3330     3510 6840 12240 

Th 
(450) 

'he total sum of squares (short-cut computation) is given by 
2 + •• •   + (580)2+ (480)2+ • •• + (590)2 - (12240)2/24 =101,600. (580)"+ (480)" + • • • + (590)" - (12240)' 

The sum of squares for aircraft types (T) is 

[(5400)2 + (6840)2]/12 - (12240)2/24= 86,400. 

The sum of squares for altitudes (A) is 

[(5940)2 + (6300)2]/12 - (12240)2/24 = 5,400. 

The sum of squares for these two factors and their interaction is 

[(2580)2+  (3360)2+(2820)2+(3480)2]/6 -(12240)2/24  =92,400. 

Hence the sum of squares for the interaction (TxA) is 

92,400 - 86,400 - 5,400 = 600. 

The sum of squares for planes within aircraft type 1 (P| Ti) is 

[(2790)2+ (26l0)2]/6 - (5400)2/12= 2,700. 
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The sum of squares for planes within aircraft type 2 (Pj T,) is 

[(3330)2 + (3510)2]/6 - (6840)2/12 = 2, 700. 

Hence the sum of squares for planes within aircraft types (Pj T) is 

2,700+ 2,700= 5,400. 

The sum of squares for altitudes in the entire experiment has 
already been found.    Since altitudes do not nest within aircraft types, 
the sums of squares for altitudes within the two aircraft types will 
not figure in the final analysis.    These sums of squares must,  how- 
ever,  be computed as an intermediate step in finding the sum of 
squares for the interaction between planes and altitudes within air- 
craft types (PxAj T). 

The sum of squares for altitudes within aircraft type 1(A[ T,) is 

[(2580)2+ (2820)2]/6 - (5400)2/12 =   4,800. 

The sum of squares for altitudes within aircraft type 2 (A[ T^) is 

[(3360)2+ 3480)2]/6 - (6840)2/12= 1,200. 

The reader should note that the sum of these two sums of squares 
is not equal to the sum of squares for altitudes (A), but rather to the 
sum of the sums of squares for A and TxA. 

The sum of squares for planes,  altitudes and their interaction 
within aircraft type 1 is 

[(1350)2+ (1230)2 + (1440)2 + (1380)2]/3 - (5400)   /12= 7, 800. 

The sum of squares for planes,  altitudes and their interaction 
within aircraft type 2 is 

[(1620)2+ (1740)2+ (1710)2 + (1770)2]/3 - (6840)2/12 = 4,200. 

Then the sum of squares for the interaction (PxA| Ti) is 

7,800 - 2,700 - 4,800 =  300, 
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and the sum of squares for the interaction (PxAjT?) is 

4,200 - 2,700 - 1,200 = 300. 

Hence the sum of squares for the interaction (PxAfT) is 

300 + 300 =600. 

The sum of squares for error is found by subtraction to be 

101,600 - 86,400 - 5,400 - 600 -5,400 - 600= 3,200. 

Since aircraft types and altitudes each occur at two levels,  the 
number of degrees of freedom for each is 2-1 = 1,  and the number of 
degrees of freedom for their interaction is (2-l)(2-l) = 1.    As in the 
previous example,  the number of degrees of freedom for planes 
within aircraft types is 2(2-1) =2.    Since there are two altitudes,  the 
number of degrees of freedom for interaction between planes and 
altitudes within aircraft types is 2(2-l)(2-l) = 2.    Since there are 
three observations for each of four planes at each of two altitudes, 
the number of degrees of freedom for error is (2)(4)(3-l) = 16. 
Since there are 24 observations in all,   the total number of degrees 
of freedom is 24-1 = 23. 

The sunns of squares,   degrees of freedom,   and mean squares for 
the various effects are given in Table 8. 6. 

 Table 8. 6  
Source of Variation SS DF MS  
Aircraft types (T) 86,400 2-1=     1    86,400/1    =86,400 
Altitudes (A) 
Interaction (TxA) 
Planes within types (P[T) 
Interaction (PxAjT) 
Error  
Total 101,600 24-1   = 23  

In making tests of significance,   T is tested by the nesting factor Pf T 
as in the preceding example,  the fixed factor A is tested by PxAJT (its 
interaction with the random factor P[T),  and the interaction TxA is 
tested by the nesting interaction PxAfT.    The nesting factor P[T and its 
interaction PxA JT with the fixed factor A are both tested by error. 
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5,400                 2-1 = 1 5,400/1   = 5 ,400 
600   (2-l)<2-l)  = 1 600/1   = 600 

5,400           2 (2-1) = 2 5,400/2   = 2 ,700 
600  2(2-l)(2-l) = 2 600/2   = 300 

3,200     2(4)(3-l)   = 16 3,200/16 = 200 



The tests are shown in Table 8. 7. 

Table 8. 7 
Source F(= Variance Ratio) F   05 F.01 
T 86,400/2,700   =    32.00 18. 51 98.49 
A 5,400/     300   =    18.00 18. 51 98.49 
TxA 600/     300   =      2.00 18. 51 98.49 
P|T 2,700/     200   =    13.50 3.63 6.23 
PxA|T 300/     200   =       1.50 3. 63 6.23 

These results confirm (and strengthen somewhat), the conclusions 
as to the significance of difference between aircraft types and between 
planes within types reached in the analysis of the preceding example. 
The F-ratio for altitudes falls just short of significance at the 5 per 
cent level,   so there is some (but hardly conclusive) evidence that 
maximum true air speed depends on altitude.    Neither of the inter- 
action F-ratios is even close to being significant; hence we have no 
evidence that either of these interactions actually exists. 

9.    POOLING 

Upon occasion a test can be made more sensitive through pooling 
of two (or more) mean squares preliminary to forming the F-ratio. 
This is possible because of the greater number of degrees of freedom 
for the pooled mean square,  and consequently of a smaller F required 
for significance.    Thus,  pooling may enable the experimenter to 
obtain a significant difference which would not have been possible 
otherwise. 

While the purpose of pooling is to obtain a more sensitive F-test 
by using a more accurate estimate of variation,  it is conceivable 
that pooling could lead to the opposite result, a less sensitive test. 
With proper precaution,  however,  this will rarely happen.    Also, 
improper and indiscriminate use of pooling may easily result in errone- 
ous results,   such as concluding that a factor is contributing significantly 
to the variation when it is not.    Pooling of mean squares is generally 
useful if there is good reason to believe that they can be assumed to 
represent the same variation.    If preliminary precaution is taken that 
this requirement is not seriously violated, the results based on pooled 
tests will usually be valid. 

Section 2 discussed the decomposition of variation into parts and 
the degrees of freedom associated with them.    Pooling,  in contrast, 
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is concerned with the  synthesis of those parts of the variation which 
have been assumed to have arisen from the same source.    This 
implies a corresponding addition of the degrees of freedom associated 
with them. 

Consider the following example of an Analysis of Variance table 
representing a factorial experiment where factor A is fixed (the 
population consisting of three levels),  factor B consists of a random 
sample of four levels from an infinite population,  and the number of 
replications is two. 

Table 9. 1 
Source of Variation SS DF MS 

A 
B 

Interaction (AxB) 
Error 

24 
27 
12 
36 

3-1      =    2 
4-1      =    3 

(3-l)(4-l) =    6 
3(4)(2-l)    = 12 

24/2   = 12 
27/3   = 9 
12/6   = 2 
36/12= 3 

Total 99 24-1    =23 

In making tests of significance A is tested by error,  B is tested 
by interaction (AxB),   and AxB is tested by error.     The results are 
given in Table 9.2. 

Table 9. 2 
Source F ( = Variance Ratio) F. 05 F. 01 

A 
B 

AxB 

12/3    =   4.00 
9/2   =   4. 50 
2/3   =   0.67 

3. 88 
4. 76 
3.00 

6.93 
9.78 
4. 82 

It is noticed here that the F-ratio for A is significant at the 5 per 
cent level,  and the F-ratios for B and AxB are not significant. 

If there is good reason to believe that the interaction has no effect 
on the variation,   then the interaction mean square and the error mean 
square can be pooled (since they would then be estimating the  same 
variation,  namely that due to chance only) so as to afford a more 
sensitive test of A.    Since the interaction mean square is,  before 
pooling,  the appropriate denominator term of the F-ratio for A,  the 
other mean square,   error,   which is being considered for pooling 
with it will be referred to as the doubtful mean square.    As corrobo- 
rating evidence that the interaction .has no contribution (other than 
chance variations),   the F-ratio of interaction to error must be not 
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significant at the 5 per cent level.    It must further satisfy the more 
restrictive requirement that it be not significant at an even lower 
level of significance,   say 25 per cent or 50 per cent,  before pooling 
is justified.    This more restrictive test to determine feasibility of 
pooling is usually referred to as a preliminary test of significance. 
What level of significance one should use for the preliminary test 
has been the subject for recent theoretical research.    This is 
discussed under the two cases given below. 

CASE I:    The expected value of the denominator mean square for the 
factor to be tested is greater than or equal to that of the doubtful 
mean square. 

For case I,  the following recommendations (stated according to 
two alternative conditions) concerning when to pool are based on the 
results given in WADC Technical Report 55-244,   Volume I.    Their 
validity has been demonstrated only for certain two-factor random 
and mixed models. 

Condition (a) - The number of degrees of freedom for the factor 
to be tested is greater than or equal to that for the denominator term 
in its F-ratio.    The number of degrees of freedom for the doubtful 
mean square is greater than or equal to five times that for the 
denominator term (of the factor to be tested). 

Condition (b)    - Either the number of degrees of freedom for the 
factor to be tested is less than that for the denominator term in its F-ratio, 
or the number of degrees of freedom for the doubtful mean square is less 
than five times that for the denominator term (of the factor to be tested). 

Under condition (a),   pooling is usually justified if the F-ratio of the 
denominator mean square (for the factor to be tested) to the doubtful 
mean square is not significant at the 50 per cent level.    Under condition 
(b),  pooling is usually justified if the F-ratio of the denominator mean 
square (for the factor to be tested) to the doubtful mean square is not 
significant at the 2 5 per cent level. 

Consider again the example described above.    The expected value of 
the interaction mean   square   is  always   greater than  or  equal  to  that 

*  
Of the two conditions,  condition (b) is the one more commonly satisfied. 
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of the error mean square (which,   in the example,   is the doubtful 
mean square. )   Thus,  the above example comes under case I.    Also 
the number of degrees of freedom for B,   3,   is less than that for 
interaction, 6.    Hence,   condition (b) holds.    The F-ratio for inter- 
action (with respect to error) is 

F =   3   = 0. 67, 

which is not significant at the 25 per cent level (F =1. 53).    On the 
. 2 5 

basis of this evidence a pooled mean square of the interaction and 
error is desirable for testing the significance of factor B.    The pooled 
mean square is simply the weighted average of the two with corre- 
sponding degrees of freedom for weights. 

Thus,  the pooled mean square to test B is 

(6x2) + (12x3) 48 
6+ 12 18 

= 2. 67, 

with 18 degrees of freedom.    The altered F-ratio for B now is 

F=26V=3-37 

which is now significant at the 5 per cent level (F   n(- = 3. 16),  thus 

showing a significant difference for the levels of factor B.     This 
result could not be arrived at without pooling. 

Consider the example of section 6,   except that the columns factor 
is taken as random instead of fixed.    The mean squares (see Table 6. 2) 
again satisfy condition (b).    As stated in section 7 the proper denomi- 
nator term for testing rows is interaction.    Consider the possibility of 
pooling error with interaction for testing rows.    Here the F-ratio for 
interaction (with respect to error) is significant at the 5 per cent level. 
Since the value of F   ?5 *s a*ways less than the value of F   QC.  this 

insures that the F-ratio is also significant at the 2 5 per cent level. 
Consequently,   one does not pool here. 

It is not known at the present time whether the above recommen- 
dations are valid for other models under case I.    However,  they appear 
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to be quite reasonable with respect to ease of manipulation and to 
give satisfactory results.    Until further research in this area yields 
more desirable methods,  it is conjectured that the above procedure 
is not far wrong when applied to more general models under case I. 

As a final example for models under case I consider that of 
section 8.    The F-ratio for altitude (A) was not significant at the 5 
per cent level when tested by PxA|T; neither was the F-ratio for 
interaction TxA when tested by PxAjT (see Table 8. 7).    The question 
naturally arises as to whether pooling PxA|T with error would 
increase the sensitivity of these two tests.    Pooling would only be 
valid if it is reasonable to assume that the PxAJT interaction does 
not contribute to the variation (except chance variation represented 
by error).    Here the expected value of the PxAJT mean square is 
greater than or equal to that of the error mean square (case I). 

This example is of a more general model than those for which the 
recommendations have been shown to hold.    However,  pooling would 
definitely be helpful here.    Thus,  a preliminary test is called for.    In 
the absence of information concerning the proper level of significance 
for the preliminary test,  one chooses 25 per cent or 50 per cent according 
to the stated recommendations (even though,   strictly speaking,  they 
may not be the best to use. ) 

Both the tests for A and for TxA satisfy condition (b).    Therefore, 
2 5 per cent is the level of significance for the preliminary test of the 
F-ratio of PxAJT to error.    Inasmuch as 

r-.2S5-i.50 
200 

is not significant at the 25 per cent level (F   ?_ = 1. 51),  pooling is 

probably valid.    The pooled mean square of PxAlT and error is 

2x300 +(16x200) 3800 . 
2+fS =      "IF"- 

The altered F-ratio for A is 

'"3ff •»•'• 
which is now significant at the 1 per cent level (F   -_ = 4. 41,  F  QI = 8. 28). 
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Using a pooled test thus gives a significant result and one can now 
conclude much more definitely than before that altitude affects the 
maximum airspeed.    The altered F-ratio for TxA is 

F=*•=2.84, 
211 

which still is not significant at the 5 per cent level (F = 4.41). 
.05 

Thus,   while pooling here has made the test more sensitive (F   QC = 

4.41 as contrasted with the pre-pooling value,   F   QC = 18. 51),   one 

still cannot conclude that the TxA interaction contributes significantly 
to the variation. 

CASE II:    The expected value of the denominator mean square for the 
factor to be tested is greater than or equal to that of the doubtful mean 
square. 

Here the preliminary test involves the F-ratio which is the re- 
ciprocal of that in case I,   i. e.  the F-ratio of the doubtful mean square 
to the denominator mean square of the factor to be tested.    For this 
case,  there is no evidence at this time as to what a satisfactory level 
of significance for the preliminary test should be.    One possibility is 
to use the 25 per cent level or the 50 per cent level according as 
condition (b) or condition (a) holds.    It may or may not be a reasonably 
good procedure to follow. 

10.    FRACTIONALLY REPLICATED EXPERIMENTS 

An experiment in which at least one observation is made for each 
possible combination of levels of the factors is said to be completely 
replicated.       An experiment in which observations are made for only 
a part of the possible combinations of levels of the factors is said to 
be fractionally replicated.     A by-product of fractional replication is 
the inability to separate the effects of certain main factors and inter- 
actions.     Two or more effects which cannot be separated are said to 
be confounded,  and each is said to be an alias    of the other(s). 

In many cases where the unit cost of observations is high and the 
number of possible combinations of levels of the factors is large,   the 
total cost of complete replication is prohibitive.    In such cases,   a part 
(but not all) of the information which would be obtained from a completly 
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replicated experiment can be obtained from a fractionally replicated 
experiment at a much lower total cost.    This is true especially when 
it is known (or can safely be assumed) that the higher-order inter- 
actions (interactions of several factors) do not exist.    Then the main 
effects (and sometimes also the low-order interactions ) can be tested, 
even though they are confounded with higher-order interactions (known 
or assumed to be non-existent). 

Consider, for example,  an experiment designed to determine the 
effect of four alloying elements on the tensile strength of titanium. 
Each alloying element will be studied at two levels (none and some 
standard percentage).    Since this experiment will involve four factors 
each at two levels,  which could be studied in all combinations,   it will 
be spoken of as a 24 factorial experiment.    Complete replication would 
require 2    = 16 observations,   and would result in the analysis shown 
in Table 10. 1,  where A,  B,   C and D are the alloying elements. 

Table 10. 1 

Source of Variation DF 
Main effects (A, B, C, D) 4 
Two-factor interactions,  (AB, AC,  AD,  BC,  BD,  CD) 6 
Three-factor interactions (ABC,  ABD,   ACD,  BCD) 4 
Four-factor interaction (ABCD) 1 
Total 2    - 1 = HT 

Even with complete replication (one observation for each combination 
of levels of the factors),  one would have to make some assumption 
about higher-order interactions in order to be able to perform any 
significance tests.    One might, for example,  assume that the three- 
and four-factor interactions really do not exist,   so that the mean 
squares found for them are really estimates of experimental error. 
In this case the main effects and two-factor interactions (each with 1 
degree of freedom) would be tested by the error mean square (with 5 
degrees of freedom) obtained by pooling the three-and four-factor 
interactions. 

If one can assume also that the two-factor interactions are non- 
existent,   information about the main effects in the experiment de- 
scribed in the preceding paragraph can be obtained from a one-half 
replicate of the experiment,  requiring only (1/2)(16)=  8 observations. 
In such an experiment,  the mean (designated by I) will be confounded 
with the four-factor interaction.    This fact will be represented 

V 
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symbolically by the confounding relation I = ABCD. 

An effect will be denoted by a capital letter,  while the presence 
of an alloying element in an observed specimen will be denoted by 
the corresponding lower case letter.    Thus A_ denotes the effect of 
alloying element A,  while a denotes that A is present as an alloying 
element in the specimen under observation.    The symbol (1) will 
signify that none of the alloying elements is present.    The obser- 
vations which must be made in a half-replicate experiment are all 
those involving an odd number (or alternatively,  an even number) 
of lower case letters.    Thus for a half-replicate of a 2    factorial 
experiment,  the observations must be either 

a,  b,  c,   d,  abc,  abd,  acd,  bed 

or 

(1),  ab, ac,  ad, be,  bd,  cd,  abed. 

The former set of observations will be used in an example,  for which 
the data are given in Table 10. 2. 

Table 10.2 

a b c d abc        abd acd bed Total 
16 24 18 14 37           39 33 35 216 

In this experiment,  the main effect of each factor is confounded 
with the interaction of the other three,  and the interaction of each 
pair of factors is confounded with the interaction of the other two.    If 
it is known or can be assumed that the interactions are all non-existent, 
then one can test the main effect of each factor (with 1 degree of 
freedom) by comparison of its mean square with the mean square for 
error (with 3 degrees of freedom) obtained by pooling the two-factor 
interactions. 

The overall effect of each factor can be found by subtracting the 
sum of all observations not involving that factor from the sum of all 
observations which do involve that factor,  thus: 

Effect of A = (16+ 37 +39 + 33)-(24+ 18 + 14 +35) = 125-91 =34, 
Effect of B =(24+ 37 +39 + 35)-(l6+ 18+ 14 +33) = 135-81 = 54, 
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Effect of C= (18+ 37 +33 +35)-(l6 +24 +14 +39)= 123-93= 30, 
Effect of D= (14+ 39 +33 +35)-(l6 +24 + 18+ 37) = 121-95 = 26. 

The sum of squares for each effect may be found by dividing the 
square of the overall effect by the total number of observations,  thus: 

SSfor A= (34)2/8 =144. 5;   SS for B = (54)2/8 = 364. 5; 
SSfor C = (30)2/8 =112.5;   SS for D= (26)2/8 =    84.5. 

The total sum of squares for the entire set of data is (16)  + (24)  + 

(18)2+ (14)2 +(37)2 +(39)2 + (33)2 +(35)2     - (2l6)2/8= 724. 

The sum of squares for the three pairs of two-factor interactions 
(to be interpreted as error) is found by subtraction to be 

724 - 144. 5 - 364. 5 - 112. 5 - 84. 5 = 18. 

The analysis of variance for the data of Table 10. 2 is shown in 
Table 10. 3 

Table 10. 3 
Source SS DF MS F (    Variance Ratio) 

A 
B 
C 
D 

Error 

144.5 
364.5 
112. 5 
84.5 
18 

1 
1 
1 
1 
3 

144. 5/1 = 144. 5 
364. 5/1= 364.5 
112. 5/1= 112. 5 
84.5/1=    84.5 
18    /3 =      6 

144. 5/6 =24. 08 
364.5/6 =60.75 
112.5/6 =18. 75 

84. 5/6 = 14. 08 

Total 724 7 

For each F-ratio there are 1 and 3 degrees of freedom,   so that 
F  QC = 10. 13 and F  QI = 34. 12.    Thus the effect of factor B is sig- 

nificant at the 1 per cent level,  while the effects of the other factors 
are significant at the 5 per cent level, but not at the 1 per cent level. 
The overall effect of each factor is positive; that is,  the presence of 
each alloying element tends to increase the tensile strength. 

The example used here was chosen for simplicity; a recent Air 
Force problem (see WADC TN 55-14) involved a    one-eighth replicate 
of a 2      factorial experiment. 
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11.    RANDOMIZATION AND THE STANDARD STATISTICAL DESIGNS. 

An experimental design is a blueprint according to which an experi- 
ment is patterned.    A statistical design is an experimental model which 
includes a further essential feature--a randomization process..   It 
furnishes the basis upon which appropriate statistical tests and infer- 
ences can be made.    The order in which observations are made,  the 
method of selection of experimental material,  the factors to be con- 
sidered and their levels,  the number of experimental units available, 
the environmental influences,  the characteristics of the experimental 
material, the particular randomization procedure to be used in assigning 
experimental units to the conditions under study,  and the process of 
recording data are all considerations to be taken into account when 
evolving an appropriate statistical design for a given experimental 
situation.    Since the design is supposedly representative of the actual 
experiment,   certain assumptions made in the design must be approxi- 
mated to a satisfactory degree by the experiment actually performed. 
Otherwise,  the inferences made would be invalid.    The statistical design 
is then inappropriate for the experiment,  or the experiment is inappropri- 
ate for the design. 

Some commonly known statistical designs of a simple nature are 
described in this section.    From past experience these have been 
shown to be very useful.    Historically,  they were developed for agri- 
cultural experimentation.    However,  their use has expanded into other 
natural sciences and they are becoming increasingly useful for experi- 
mentation in such fields as engineering,   chemistry,  astronomy,  psy- 
chology,  and other physical and biological sciences,  both pure and 
applied.    Four typical designs will be considered and their advantages 
and disadvantages discussed: 

(1) completely randomized design, 
(2) randomized block design, 
(3) Latin square design, 
(4) factorial design. 

The completely randomized design is essentially a one-factor model 
with replication.    As indicated by the name the assignment of an experi- 
mental unit to a given level of the factor is completely random in the 
statistical sense.    Random (in the statistical sense) means that any one 
of the experimental units has an equal chance of being chosen for a 
given level of the factor.    Table 3.1 is an example of a completely 
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randomized design,  if it is considered that the twelve items were 
made from twelve pieces of raw material (experimental units) obtained 
from a common source,   each factory being assigned four pieces at 
random. 

The following example is taken from Freeman. *   For purposes 
of comparison with the other designs to be discussed these same data 
will be used over again.    Of course, for each design the context will 
be different as will be the experimental situation and the assumptions 
made; only the numerical values are kept the same so as to provide 
suitable contrast among the different designs. 

An experiment was conducted to compare the effects of five differ- 
ent types of grids, A,  B,  C,   D,  E,   on the vacuum of radio tubes.    A 
total of twenty-five tubes was used for the experiment. 

Suppose for the present that one has no knowledge whatever as to 
what causes other than grid type might affect the observations.    The 
only safeguard in such a situation is to make sure that these do not 
bias the results.    And the only effective way of doing this is to random- 
ize.    A simple procedure for randomizing is: 

(1)   Assign numbers 1,  2, • • • ,  25 to the twenty-five tubes. 

(2)   Put these numbers on slips of paper,  throw them into 
a hat,  and shuffle well.    Pick out the slips of paper.    Assign the first 
five to grid A,  the second five to grid B,  and so on. 

The drawbacks to such a procedure are that because of non-uniformity 
of size of paper slips,  and of the difficulty of effecting thorough shuffling, 
each slip may not have an equal chance of being chosen for a given grid, 
and true randomness may not be attained.    A much more dependable 
randomization procedure is to use a table of random numbers.        One 
possibility of using such a table for this procedure is given below. 

(1) Using two-digit random numbers,  assign random 
numbers 00-03 to tube 1,  numbers 04-07 to tube 2, • • • ,   96-99 to tube 25. 

(2) Starting anywhere in the table of random numbers and 
proceeding in a systematic order,  pick out the tubes according to the 

Freeman,  H. A. ,  Industrial Statistics,  p. 52. 
* 
E.g.,   Tippett,  L.H. C. ,  Random Sampling Numbers. 
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two-digit numbers chosen,   ignoring any number if it corresponds 
to a tube already chosen.    Assign the first five tubes to grid A,  the 
second five to grid B,  and so on. 

The observations are then taken according to the above plan.    The 
data as given in terms of a relative measure of vacuum (obtained by 
subtracting 90. 0 from each of Freeman's data) may be as in Table 11. 1, 

Table 11. 1 

A 

3.6 

B 

5.3 

C 

4.5 

D 

6. 8 

E 

4.6 
5.3 6.9 7.0 8.2 7.8 
7.0 5.8 7.8 7.2 8. 0 
3.7 7.3 7.0 7.2 5.0 
8. 0 7.7 8.3 7.9 8.9 

Sum 27. 6 33.0 34.6 37. 3 34. 3 
Mean 5. 52 6.60 6.92 7.46 6. 86 

Table 11.2 

SS DF MS 

1756 
F 

T7l6 
F. 05 

10.25 4 2.87 
44. 18 20 2.21 
54.43 24 

The analysis of variance for this completely randomized experiment 
is given below in Table 11. 2. 

Source of Variation 
Difference among grids        lo725 
Tubes within grids 

Total 

The difference among grids is not significant at the 5 per cent level. 

The analysis of variance for the general completely randomized 
experiment with k levels for the factor under consideration and n 
replications is given by Table 11. 3. 

Source of Variation §S DF MS 

A = Difference among nS(x,   -x     )2 k-1       SSA/DFA      MSA/MS 
klevels 

Table 11. 3 

SS 

nS(Xi>- X •   • )2 

2 2 (x^ "xi. )2 

SS(xir 

i j 
-X • y 

A '""A     "'"A' —E 

= = Error ZXHtli-Xz.r Mn-1)    SSE/DFE 

Total SS(xirx     )2 nk-1 
i j 
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Randomization insures that under repeated observations a treat- 
ment will not be continually favored or handicapped by a source of 
variation which the experimenter had not taken account of.    Random- 
ization is also important from another point of view.    It is the only 
part of the experimental procedure which makes use of the laws of 
chance.    Since the laws of chance in turn are associated with the 
frequency distribution on which the statistical tests of significance 
are based,   randomization provides the necessary foundation for a 
valid test of significance.    This is exactly the reason why a system- 
atic arrangement fails.    Thus,  randomization is absolutely necessary 
to insure valid estimates of variation. 

While randomization has made significance tests possible,  the 
completely randomized design nevertheless represents a very 
"insensitive" experiment,  because no attempt has been made to 
decrease the error variance,   i.e. ,  to increase the precision.    The 
precision can be maximized by separating out the variation of other 
factors suspected of contributing significantly to the variation. 

One type of experimental procedure used to improve the precision 
or sensitivity of an experiment is to divide the group of experimental 
units into subgroups which are homogeneous within themselves.    vTbi.s 

is possible only if one is able to recognize that there is homogeneity 
with respect to some criterion.    Because of a~ restriction    in the 
randomization "procedure that-will be described later in this section, 
the number of experimental units per subgroup must be equal to the 
number of levels of the factor being studied (or to the total number of 
combined levels,   in the case where more than one factor is being 
studied).    All levels of the factor are then assigned, by a random 
procedure such as that described above,  to each subgroup of experimental 
units.    These subgroups are referred to as blocks,  and the design is 
known as a randomized block design. 

In a randomized block design the variation due to differences among 
blocks (block effect) is separated out from the error variation.    The 
characteristics of such a design are: 

(1) blocks are as different as possible; 

(2) experimental units within blocks are as similar as possible. 

j. 

For such a design to be efficient, the factor x block interaction must be 
negligible. This point should be taken into account if one desires to use 
the randomized block design. 
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Consider now the example described on the effect of different 
grid types on the vacuum of radio tubes.    In order to increase the 
precision one should attempt to remove other causes of variation 
which may greatly influence the vacuum.    For example, the machines 
which seal the tubes may vary in their ability to produce a vacuum, 
the operators that handle the machines may differ in comparative 
skill,  and temperature and humidity may be important factors. 

One method often advocated for removing such causes is to have 
one operator use one machine for sealing all types,  under standard 
temperature and humidity conditions.    (This is known as standardization 
of experimental techniques).    However,  as will be discussed more 
fully later, the limitations of such an approach are severe.    For 
example,  it may take too long to use just one machine and one operator. 
Besides,   one is often vitally interested in answering other questions, 
such as "do differences in operator skill significantly affect the 
vacuum?" 

Another equally valid method which provides an answer to this 
question is to assign (by a randomization procedure) Type A, B,  C, 
D,  E grids on 5 tubes which will be sealed by Operator 1,  Type A, ' • • , 
E on 5 tubes to be sealed by Operator 2, • • • ,   Type A, • • • ,  E on 5 tubes 
to be sealed by Operator 5  .        This is a randomized block design with 
each operator representing a block.    Since a grid x operator inter- 
action is not a likely prospect,  this design would probably be efficient 
for the example. 

One possible randomization procedure here is: 

(1) Choose 5 tubes for Operator 1,   5 tubes for Operator 2, 
• • • ,   5 tubes for Operator 5 by the method described on bottom of page 30 
(replacing "grids" by "operators" in that description). 

(2) Assign the 5 tubes for Operator 1 at random to grids 
A, B,  C,  D,  E, using a table of random numbers; repeat for Operator 2 
through Operator 5. 

In a randomized block design it is not necessary that the number of 
blocks equal the number of levels of the factor being studied,  though 
this is the case for this example.    Here,  the number of operators 
(blocks) = the number of grid types = 5.    On the other hand,  it is 
necessary that the number of experimental units per block be equal 
to the number of levels of the factor being studied. 
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The principle involved here is randomization subject to one re- 
striction; namely,  that a given level of the factor being studied occurs 
once and only once in a given block. 

Steps (1) and (2) can be combined into an even simpler random- 
ization procedure: 

(1)   Associate code number-letters 1A,   IB,  •••,  5E with 
random-number intervals 00-03,   04-07,   ••• ,  96-99,  where the code 
number refers to the operator,  and the code letter refers to the type 
of grid.    Taking the tubes in any order,  assign the first tube to the 
appropriate operator and grid according to the first random number 
chosen (use a table of two-digit random numbers;throw out all repe- 
titions); and so on. 

Following the above randomization procedure,  the observations 
are taken, and the resulting set of data may be given in Table 11. 4. 

Table 11.4 

Grid 

Operator A B C_            _D _E_ Sum Mean 

1 7.0 5.8 7.8            7.2 8.0 35.8 7. 16 
2 8. 0 7.7 8.3            7.9 8.9 40. 8 8. 16 
3 3.6 5.3 4. 5           6. 8 4.6 24. 8 4.96 
4 3.7 7.3 7.0           7.2 5.0 30.2 6.04 
5 5.3 6.9 7. 0            8.2 7. 8 35.2 7.04 

Sum 27.6 33.0 34. 6          37. 3 34.3 166. 8 
Mean 5.52 6.60 6.92         7.46 6.86 6.67 

The analysis of variance for this experiment is given in Table 11.5. 

Table 11. 5 

Source of Variation 
Difference among grids 
Difference among operators 
Discrepance 
Total 

ss DF MS F F. 05 F. 01 
10.25 4 2.56 2.78 3.01 4. 77 
29.59 4 7.40 8.04 3. 01 4. 77 
14.69 16 .92 
54.43     24 

Note that the difference among operators is significant at the   1 per 
cent level.    Since this significant effect has been removed from the error 
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variation,  a much more sensitive test can be made for grid effect. 
However,  the F-value for grids,   while close to the 5 per cent value, 
is still not significant.    Contrast Table 11. 5 with Table 11.2. 

The analysis of variance table for the general randomized block 
experiment with k levels for the factor under consideration and n blocks 
containing k experimental units is given by Table 11. 6. 

Table 11.6 

Source of Variation SS DF MS F 

A = Difference among        n 2 (X{. - *.. )2 k-1                  SSA/DFA    MS
A^MS

D 

klevels                           x 

B = Blocks                              kS(x.j-x,.)2 n-1                 SSg/DFg    MSfi/MSD 
J 

D = Discrepance      2 S (Xij - Xi. - x. j - x. . }2 (k-l)(n-l) SSD/DFD 

Total                                           SZ|Y.. - x     \Z kn-1 
?S(*ij-*..) 
i  j       J 

The advantage of the randomized block design is the elimination of 
the effect on the error mean square of large differences among experi- 
mental units.    The error sum of squares is diminished by the amount 
separated out for the block effect,  and a smaller estimate of the remain- 
ing variation (discrepance) results.    The disadvantage of using a random- 
ized block design occurs when the factor x block interaction is not 
negligible. 

Consider now a third classical design,  the Latin square.    Whereas 
the randomized block design eliminates the effect of one environmental 
factor other than the factor being studied,  the Latin square eliminates 
two.    For convenience,   designate these two factors by "row"' and 
"column".    Here a double restriction is imposed on the experimental 
procedure: a given level of the factor being studied occurs once and 
only once within a row and once and only once within a column.    This 
restriction implies that the number of rows and the number of columns 
are each equal to the number of levels of the factor being studied. 
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In the example the Latin square design would enable one to 
eliminate differences among machines (column effect) in addition to 
eliminating operator differences (row effect).    As an illustration of 
such a design one now considers five operators and five machines in 
connection with the five grids.    In order for the Latin square to be ef- 
ficient,  it must be reasonable to assume that none of the possible 
interactions is significant.    Otherwise the design is inadequate. 

A possible randomization procedure is the following: 

(1) For Operator 1,  assign the five grids to the five machines 
at random; 

(2) For Operator 2,  assign the five grids to the five machines 
at random except that no grid is allowed to occur which has already 
been assigned to Operator 1 on the same machine (if such an event 
occurs, throw out such a random number); 

(3) Continue in the same manner,  employing the double re- 
striction that a grid can occur only once in a given row and only once 
in a given column,  until all rows and columns are filled. 

Following such a randomization procedure, the observations are 
taken,  and the resulting set of data may be given in Table 11. 7. 

Table 11.7 

Machine 

Operator 
1 8.0(E)* 5.8(B) 7.2(D) 7.0(A) 7.8(C) 
2 8.3(C) 7.9(D) 7. 7(B) 8.9(E) 8. 0(A) 
3 3. 6(A) 4.5(C) 4.6(E) 5.3(B) 6. 8(D) 
4 7.2(D) 5.0(E) 3. 7(A) 7.0(C) 7. 3(B) 
5 6.9(B) 5. 3(A) 7.0(C) 8.2(D) 7. 8(E) 

Grid type 

The analysis of variance for this experiment is given by Table 11. 8. 
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Table 11 .8 

SS 
10.25 

DF 
4 

MS 
2. 56 

F       F>05 

13.47    3.26 
F  01 
5.41 

29.49 4 7.40 38.94    3.26 5.41 
12.42 4 3. 11 16.37    3.26 5.41 
2.27 12 . 19 

54. 53 24 

Source of Variation 
Difference among grids 
Difference among operators 
Difference among machines 
Discrepance 
Total 

For this experiment,  it is found that grid effect,  operator effect, 
and machine effect are all significant at the 1 per cent level.    Contrast 
Table 11. 8 with Tables 11.2 and 11. 5.    Thus, for this example,  the 
Latin square arrangement permitted the statistical demonstration that 
differences among grids had a significant effect on vacuum,   a result 
which could not be determined by either the randomized block design 
or the completely randomized design.    It should not be tacitly assumed, 
however,  that the Latin square design is always to be preferred to the 
other two.    As mentioned at the beginning of this section the appropri- 
ateness of a given design depends on many considerations,  including 
the restrictions necessarily imposed by its use.    Notice that the re- 
strictions on the nature of the observations become increasingly 
stringent as one progresses from the completely randomized design, 
through the randomized block design,  to the Latin square design. 
Thus because of the increased restrictions, the Latin square design 
may not be the appropriate one at all to use for a given experimental 
situation. 

The analysis of variance table for the general Latin square arrange- 
ment with k levels for the factor under consideration,  k rows,  and k 
columns is given by Table 11. 9. 

For greater precision,  the Latin square can be replicated. 
• 

The Latin square design is especially suited to study the variation 
due to 4 to 8 levels of the factor under consideration,   i. e. ,  a small 
selected number,   where the effect of varying levels of two other factors 
needs to be considered simultaneously.    As in the case of randomized 
blocks, the disadvantage in using a Latin square design occurs when 
any of the interactions are not negligible,   since in such a case the 
design is an inefficient one. In the event of non-negligible inter- 
actions)  ,  or when it is desired to study a factor under varying 
conditions of a large number of other factors,  a factorial design is 
a more appropriate one to use.    The factorial design involves 
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Table 11.9 
- 

Source of Variation SS DF MS F 

A = Difference among       kS (Xf^.r        k-1 SSA/k-l     MSA/MSD 

klevels * 

B = Difference among       k2 (x:    -x    )2       k-1 SS   /k-1     MS   /MSn 

rows V B 

C = Difference among       kZ(*,-x..) k-1 SSc/k-l     MSC/MSD 

columns J 

D = Discrepance E2(XJJ-X    ) (k-l)(k-2) 
1 J SSD/(k-lXk-2) 
-SS  -SS„ -SS- 

A      a        <- 

Total 2S(x-. -x    )2        k2-l 
.   .     ij       • • 
i J 

observations on all possible combinations of the levels of all factors 
being considered.    For example,  a three-factor factorial arrangement 
with two replications and 2 levels of factor A,  4 levels of factor B, 
3 levels of factor C,   involves 2x2x4x3 =48 observations. 

The data of Table 11.4,  representing a one-factor randomized 
block design,  illustrate essentially a two-factor factorial arrangement 
which is unreplicated.    The data given in Table 6. 1 and the corre- 
sponding analysis of variance Tables 6.2,   6. 3 illustrate a two-factor 
factorial arrangement with replication.    Note that Table 6. 3 indicates 
a significant interaction at the 5 per cent level.    The analysis of vari- 
ance table for a three-factor factorial design with a levels for factor A, 
b levels for factor B,  c levels for factor C,  and n replications, is 
given in Table 11. 10.    No F-ratios are indicated since they will depend 
on whether the factors are fixed or random. 

There are abc possible combinations of levels for this three-factor 
experiment.    The randomization procedure may be carried out in the 
following manner:   choose at random out of abcn experimental units, 

Xj. is the average of the k values pertaining to the t_ level of the 
factor being studied. 
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Table 11.10 

Source of Variation SS 

Single Factors: 

A nbc 2 (x.       -x )2 

B nac S(x  ,     -x )2 

j        J 2 
C nab S(x    v  -x )* 

Interaction between 2 factors: 

AxB 

AxC 

BxC 

DF 

a-1 

b-1 

c-1 

MS* 

nc  ZZlx,,     -x. .   +x ) 

na  ? k(X-Jk'"X 

Interaction among all three factors 

nb  2S(x.  ,    -x.       -x    ,   +x )2 

.     -x    .    +x )2 

AxBxC 
nf2S(xijk.-xij..-xi.k.-x.jk. 

+ X. +X    .        +X       ,      -X )' 

(a-l)(b-l) 

(a-l)(c-l) 

(b-l)(c-l) 

(a-l)(b-l)(c-l) 

Error: 

E 

Total 

* 

fjiy"*!-"^ 

i j k t)      J    ' 

abc(n-l) 

abc.n-1 

MS= SS/DF. 

the n experimental units that are to be given a certain combination; 
continue choosing until all abc combinations are assigned their n 
experimental units. 

Many chemical and engineering experiments involve only variations 
of single factors with control of the other factors at a fixed level.    As 
mentioned earlier in this section this is referred to as standardization 
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of experimental techniques.    There are at least three important 
advantages of a factorial experiment over a standardized experiment: 

(1) more efficiency, 
(2) more information, 
(3) broader inductive basis. 

To illustrate these points consider the case of four factors.    A factorial 
experiment measuresthe effect of each of the four with the same pre- 
cision as if the entire experiment had been devoted to one factor only; 
thus only one fourth as many observations are used as for the standard- 
ized arrangement,  and greater efficiency is achieved. 

In addition,  an evaluation can be made of all the interactions among 
these factors with the same precision,   whereas with a series of experi- 
ments on each factor singly no such information can be obtained.    The 
interactions may or may not contribute significantly but this information 
.nevertheless needs to be known; thus more information is gained. 

Any conclusion concerning a given factor based upon an experiment 
in which the other important factors are varied has a much broader in- 
ductive interpretation than that which is based upon experimentation in 
which these are kept standardized (regardless of the amount of experi- 
mentation involved).    The factorial design deliberately varies these 
factors.    Since a highly standardized experiment furnishes direct infor- 
mation only for the narrow range of conditions achieved by it,   it weakens, 
rather than strengthens,  the grounds for inferring a like result under 
varied conditions.     This is why,   in practice,   a standardized experiment 
may not be the desirable design to use,   though it is often strongly 
advocated because of its simplicity. 

The factorial design needs to be replicated to insure an independent 
estimate of error.    Often,   in unreplicated experiments it is assumed 
that the highest order interaction is negligible to allow for suitable tests. 
Whether this assumption is a good one or not depends upon the particular 
experimental situation. 

To conclude this section, a partial list of some more complex designs 
(which have found use under more specialized experimental requirements) 
is mentioned below: 
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(1) cross-over designs, 
(2) Graeco-Latin squares (randomization under triple 

restrictions), 
(3) split-plot designs, 
(4) balanced incomplete block designs, 
(5) lattice designs, 
(6) Youden squares. 

12.   MULTIPLE COMPARISONS 

The basic F-test in an analysis of variance determines whether 
there is a significant difference among a group of means, but it can- 
not tell which means differ significantly from which others.    The 
latter is often what the investigator really wants to know.     Various 
multiple comparisons tests have been proposed to determine whether 
each mean differs significantly from each other.    Perhaps the best 
of these is the Newman-Keuls test,  which will be described and 
illustrated in this section. 

Suppose the F-test has shown that the means for the levels of a 
particular factor differ significantly at the 5 per cent level (or the 
1 per cent level).    If one desires to know which means differ signifi- 
cantly from which others,  he should arrange the means in order from 
smallest to largest.    Let m be the number of levels of the factor under 
consideration,  let s^ be the mean square used as the denominator of 
the F-ratio for testing that factor,  let n? be the number of degrees of 
freedom for s   ,  and let k be the number of observations at each level 
of the factor under consideration.    Then the significance of p successive 
ordered means (p=m,  m-1,   • • • ,   2) can be tested by comparing their 
range (the difference between the largest and smallest of the p means) 
with the critical range for p means.    To obtain the critical range of p 
out of m ordered means for the Newman-Keuls procedure,   one multi- 
plies (for the desired significance level) the studentized range    of p 
observations with n^ degrees of freedom for s    by the standard error 

of the mean,   s— = N/S2 /^ 

ak The 5 per cent and 1 per cent levels of the studentized range have been 
tabulated in Pearson and Hartley, Biometrika Tables for Statisticians , 
Biometrika Office,  London,   1954. 
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Usually the Newman-Keuls procedure will show the entire set 
of m means to be significant at the same level as does the F-test. 
In fact,  the Newman-Keuls test on the entire set may be used as a 
substitute for the F-test.    If there is a significant difference among 
the m means,  then one proceeds to make the test on (m-1) means, 
omitting first the largest,  then the smallest (or vice versa).    If a 
significant difference is found,  one then tests groups of (m-2) means, 
and so on until no further significant differences are found.    Each 
group of means found not to differ significantly is underscored by a 
single line.    Thus two means not underscored by the same line do 
differ significantly.    It should be noted that p means are not declared 
to be significantly different if they   all   belong to a larger group of 
means found to be not significant,  even though their range may exceed 
the critical range of p means. 

As an example of the Newman-Keuls procedure,   consider the data 
shown in Table 12. 1,  which might represent the survival time (in 
days) of rats on five diets. 

Table 12. 1 

A B C D E 

1 6 7 11 6 
2 4 5 11 8 

Total 
3 
6 

8 
18 

3 
15 

8 
30 

7 
21 90 

Mean 2 6 5 10 7 6 

An analysis of variance of these data yields the results shown 
in Table 12. 2. 

Table 12.2 

Source of Variation 
Difference among diets 

SS 
102 

DF 
4 

MS 
25. 5 

Rats within diets 26 10 2.6 
Total 128 14 

9. 81 

Since F = 5.99 for 4 and 10 degrees of freedom,  the difference 

among diets is significant at the 1 per cent level. 
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In applying the Newman-Keuls procedure,   one first arranges 
the means in order from smallest to largest, thus: 

A C B E D 
2 5 6 7 10 

Next one computes the standard error of the mean, 

s_    =    N/2.6/3   =   \/0. 867  = 0.931 

The 5 per cent and 1 per cent points for the studentized range of 
p observations (p = 2,   3,  4,   5) with 10 degrees of freedom for s    are 
given in Table 12.3. 

Table 12. 3 

p = 2 p = 3            p = 4 P = 5 
5% 3. 15 3.88             4.33 4. 65 
1% 4. 48 5.27              5.77 6. 14 

The critical ranges,  which are the products of  s— = 0. 931 and the 

corresponding values in Table 12. 3,  are given in Table 12.4. 

Table 12.4 

p = 2 P = 3 p = 4 P = 5 
5% 2. 93 3.61 4.03 4.33 
1% 4. 17 4.91 5. 37 5.72 

The range of all five means (10 - 2 = 8) is significant at the 1 per cent 
level,   since it is greater than 5. 72.    The range of four means,  excluding 
D, (7-2 = 5) and the range of four means, excluding A,  (10 - 5 = 5) are both 
significant at the 5 per cent level,  but not at the 1 per cent level,   since 
5. 37 > 5 > 4. 03.    The range of three means,  excluding D and E,  (6-2=4) 
and the range of three means,   excluding A and C,  (10 - 6 = 4) are significant 
at the 5 per cent level, but the range of three means,   excluding A and D, 
(7 - 5 = 2) is not significant at the 5 per cent level,   since 4 > 3. 61 >2.    The 
range of two means, A and C,  (5-2 = 3) and the range of two means, E and 
D, (10-7 = 3) are significant at the 5 per cent level,   since 3>2.93.    The 
ranges of two means,  C and B,  and of two means,  B and E,  are not 
considered for possible significance,   since both of these pairs are 
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subsets of a set of three means,  excluding A and D,  whose range was 
found to be not significant. 

The results of the 1 per cent level test may be summarized as follows: 

A C B E D 
2 5 6 7 10 

A similar summary for the 5 per cent level test is: 

A                C                B                E D 
2 _5 6 7 10 

13.    TRANSFORMATIONS IN THE ANALYSIS OF VARIANCE. 

The analysis of variance is based upon certain underlying assumptions-- 
normality,  homoscedasticity,  additivity,  and uncorrelated errors.    It is 
assumed that each random effect(including experimental error),   has a 
normal (Gaussian) distribution.    The normal distribution is represented 
graphically by a certain bell-shaped curve,  and is uniquely determined 
by two parameters, the mean and the variance (or its square root, the 
standard deviation).    Homoscedasticity    means equal variation in all 
subclasses.    Additivity   implies that the effect of two causal factors work- 
ing together is the sum of their separate effects.    If there is no linear 
relationship between two variables,  they are said to be uncorrelated.    If 
there is no relation of any kind (linear or non-linear) between two variables, 
they are said to be independent of each other.    Normality and lack of 
correlation together imply independence. * 

In cases where the assumptions underlying the analysis of variance 
are not satisfied, it may be advisable to apply a transformation to the 
data before performing the analysis.    If the type of population from which 
the data have been drawn is known,  there are valid theoretical grounds 
for choosing the transformation to be used.    If the population has a 
Poisson distribution (as is often true in the case of integral values ob- 
taining by counting), the square-root transformation can be shown to be 
appropriate.    If the population has a logarithmico-normal distribution 
(as in the case of sample variances),  the logarithmic transformation 
should be used.    In the case of a sample correlation coefficient r, the 

See Cramer, Harald,   Mathematical Methods of Statistics, p. 311. 

WADC TR 56-20 44 



proper transformation is (1/2) log [(l + r)/(l - r)].    For a binomial 
population (as in the case of percentages),  there are valid reasons 
for using the arc sine transformation,  though the probit and logit 
transformations have been advocated for use in this case,  especially 
in bioassay problems.    In the case of ranked data,  transformation to 
expected normal scores is recommended.    All of these transformations 
tend to normalize the data and homogenize the variance.    Transfor- 
mations which do one of these things usually (but not always) do the 
other also,  and also tend to reduce non-additivity of the effects.     The 
remedy for correlated errors is not so much in the direction of 
transformations as in the direction of proper randomization procedures. 

In cases where the type of population from which the data have been 
drawn is not known,  an effort must be made to determine objectively 
from the data whether or not a transformation is needed and,  if so, 
which one.    Here the criterion of normality is not as useful as one 
might wish.    Given a set of data,   it is very difficult to decide what the 
parent population is like,  though extreme departure from normality 
can be detected.    Until fairly recently,  the principal criterion for 
transformation of empirical data has been heterogeneity of variance 
(heteroscedasticity).    The usual procedure has been to consider the 
relation between the mean and the variance of the various subclasses, 
and to use the transformation which is appropriate for the theoretical 
distribution having the same relation between mean and variance.    If 
the variance is proportional to the mean,  as for the Poisson distri- 
bution,  the square-root transformation is used.    If the variance is 
proportional to the square of the mean,  as for the logarithmico-normal 
distribution,  the logarithmic transformation is used.    During the past 
few years,   greater attention has been paid to the additivity of effects. 
Two theoretical advances have given impetus to this change in emphasis. 
Tukey proposed that a test for non-additivity be made by separating the 
sum of squares for discrepance into two parts,  with one degree of 
freedom for non-additivity and the rest of the degrees of freedom for 
residual.    If the F-ratio formed by dividing the mean square for non- 
additivity by the residual mean square is large,  the need for a transfor- 
mation to correct for non-additivity is indicated.    Box showed that sub- 
stantial departures from normality and homogeneity of variance have 
but little effect on the overall test of significance for models involving 
equal subclass numbers.      As knowledge of these findings has spread, 
the tendency has been in the direction of making a transformation, 
where necessary,  that will help to ensure additivity,  and to hope that 
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normality and homogeneity of variance will come along as by-products. 
If two or more transformations are satisfactory with respect to addi- 
tivity,  heterogeneity of variance is used as a secondary criterion for 
choosing the best transformation.    Thus,  among those transformations 
which reduce non-additivity to a reasonable level,  one chooses that 
transformation which also reduces heterogeneity as much as possible. 

One transformation not mentioned so far is the reciprocal transfor- 
mation.    This should be considered especially when the reciprocal of 
the original variable is just as capable of sensible interpretation as is 
the original variable itself.    For example one may want to analyze data 
on frequency instead of wave length,  or on conductance instead of 
resistance. 

For a single-classification experiment,  non-additivity is not  defined. 
Hence one concerns himself with non-homogeneity of variance and non- 
normality.    Neither of these has a serious effect on the overall F-test 
for equal subclass numbers.    They may,  however,  be serious for 
unequal subclass numbers.    They may also have a marked effect on 
individual comparisons,   even for equal subclass numbers.    In choosing 
a transformation for a single-classification experiment,   one should 
seek to reduce heterogeneity,  hoping that non-normality will simul- 
taneously be reduced. 

For the double-classification experiment with a and b levels of 
factors A and B,  respectively,  the sum of squares (or mean square, 
since it has but a single degree of freedom) for non-additivity is given 
by 

ab {SS y-j (Yi. -y.. )(y. ry. .)}2 

i J       J J_  

(SSfor A)(SS for B) 

where y.. is the observation for the i      level of factor A and the j      level 

of factor B,   and where the dot notation indicates an average over the 
missing subscript(s),  viz. 

Vi-   = ih yij/b'   y-J =   ill yiJ/a'Y- '   = ill b?l   YiJ/ab- 
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For the triple-classification experiment with a, b and c levels of 
factors A,  B and C,  respectively,  the sum of squares (or mean square) 
for non-additivity is given by 

(abc)2 {Z  X  S   yijk(yi..-y...)(y.j.-y...)(y..k-y...)}2 

 1—I , 
(SS for A)(SS for B)(SS for C) 

where y.,,   is the observation for the i     level of factor A,  the j"1 level 
tVi 

of factor B,   and the k     level of factor C,  and where the dot notation 
indicates an average over the missing subscript(s).    Thus 

b      c a     c a     b 
*""A  kS=iyiJk/bc'  y'j-   %?, £,  yi*/ac'  *•'**& j?iyijk/ab' 

*••• • iiij!ikiiyijk/abc- 

As an example of the use of transformations in the analysis of 
variance,   consider an experiment involving the measurement of the 
electrical resistance of propeller blades recently conducted by the 
Propeller Laboratory of WADC.    Eight operators individually measured 
the resistance of each of four propeller blades with each of two instru- 
ments,  a 500-volt megger and a 1000-volt megger.    The order of the 
64 measurements was randomized.     The data are given in Table  13. 1. 

Table 12 ;. i 

Resistance of Propelli sr Blades (megohms) 
Voltage of Operator 

Blade Instrument     1 2 3 4 5 6 7 8 

1 500 7. 50 8.00 8. 10 8.00 7. 50 8.00 8. 00 8. 00 
1000 6.00 5.00 6. 10 5. 75 6.00 6.00 5.80 5.00 

2 
500 0.30 0. 30 0.31 0. 31 0.30 0. 31 0. 30 0. 30 

1000 0.30 0. 30 0. 30 0. 30 0.40 0. 35 0.35 0.30 

3 
500 0. 31 0. 31 0.30 0.40 0.35 0.33 0. 32 0. 31 

1000 0. 30 0.45 0. 30 0. 30 0. 35 0. 35 0. 35 0. 30 

4 500 35.00 32.00 30.00 32. 00 32.00 32.00 35.00 33.00 
• 

1000 27.00 25.00 31.00 24. 00 25.00 25. 00 26. 00 25. 00 
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For a three-factor experiment (without nesting),  the sums of 
squares are most easily computed with the aid of three auxiliary two- 
way tables in which each entry represents,  for particular levels of 
two-factors,  the sum over all levels of the other factor.    The three 
two-way tables constructed from the data of Table 13. 1 are Tables 
13.2,   13. 3 and 13.4. 

Table 13.2 
Voltage of 
Instrument 1 2 

Blade 
3 4 

Sum 

500 
1000 

63. 10 
45. 65 

2.43 
2.60 

2. 63 
2. 70 

261. 00 
208. 00 

329. 16 
258.95 

Sum 108.75 5. 03 5. 33 469. 00 588. 11 

Table 13 . 3 

Blade 
1 2 3 

Operator 
4            5            6 7             8 Sum 

1 
2 
3 
4 

13. 50    13. 00    14.20    13". 75    13. 50    14. 00    13. 80    13. 00    108. 75 
0.60      0.60      0.61      0.61      0.70      0.66      0.65 
0.61      0.76      0.60      0.70      0.70      0.68      0.67 

62.00    57.00    61.00    56.00    57.00    57.00    61.00 

0. 60 5. 03 
0.61 5.33 

58.00    469.00 
Sum       76.71    71 . 36    76 .41    71.06    71.90    72.34    76.12    72.21    588.11 

Table 13.4 
Voltage of 
Instrument      1 2 

Operator 
Sum 

3             4             5             6             7             8 

500          43. 11 
1000          33.60 

40.61 
30. 75 

38.7140.71    40.15   40.64 43.62    41.61   329.16 
37.70   30.35    31.75    31.70   32.50    30.60   258.95 

Sum               76.71 71. 36 76.41   71.06   7 1.90    72.34   76.12    72.21    588.11 

The total sunn of squares is given by 
2 

(7. 50)2 + • • • + (25. 00)2 - (588,H)   =   9336 . 1465 
64 

The sum of squares for blades is 

16 
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The sum pf squares for instruments is 

(329. l6)2+(258.95)2 - (588. 11)2_„„   .„. 
 32       64 77, °226 

The sum of squares for operators is 

(76. 71)2+ ••• + (72. 21)2 - (588. II)2 

8 64 

Remembering that each entry in Table 13. 2 is the sum of eight 
observations,   one finds the total sum of squares for this table to be 

(63. 10)2+ ••• +(208.00)2  - (588. 11)2_ 4Q41 

8 64 

The sum of squares for the interaction between blades and instruments 
is then found by subtraction to be 

9280.4041-9085. 8081-77. 0226 = 117. 5734 

Remembering that each entry in Table  13. 3 is the sum of two 
observations,  one finds the total sum of squares for this table to be 

(13. 50)2 »-..+ (58. 00)2 - (588. II)2.   9105-4226 

2 64 

The sum of squares for the interaction between blades and operators is 
then found by subtraction to be 

9105. 4226-9085. 8081-5. 2173 = 14. 3972 

Remembering that each entry in Table  13.4 is the sum of four 
observations,   one finds the total sum of squares for this table to be 

(43. II)2 +•••+ (30. 60)2 - (588.11)2 =91#6382 

4 64 
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The sum of squares for the interaction between instruments and 
operators is then found by subtraction to be 

91.6382-77.0226-5.2173 =9.3983 

Since the experiment is unreplicated,  the three-factor interaction 
and the experimental error cannot be separated.    Their sum will be 
called the three-way discrepance.    The sum of squares for the three- 
way discrepance is found by subtraction to be 

9336. 1465-9085. 8081-77. 0226-5. 2173-117. 5734-14. 3972-9. 3983 =26. 7296 

The analysis of variance and the resulting F-tests are given in 
Table 13. 5.    Since blades and instruments are assumed to be fixed and 
operators random,  all effects not involving operators are tested by their 
interaction with operators,  while all factors involving operators,   in the 
absence of a separate error mean square, are tested by the three-way 
discrepance. 

Table 13. 5 

Analysis of Variance for Data of Table 13. 1. 

Source of Variation SS DF MS F 

Blades(B) 9085. 8081 3 3028. 6027 4417 
Instruments (I) 77. 0226 1 77. 0226 57. 37 
Operators (O) 5.2173 7 0.7453 0. 59 
Bxl 117.5734 3 39.1911 30.79 
BxO 14. 3972 21 0. 6856 0. 54 
IxO 9. 3983 7 1.3426 1. 05 
Discrepance 26. 7296 21 1.2728 
Total 9336. 1465 oT 

The F-ratio for blades (4417) is very highly significant (F  Q. = 4. 87 

for 3 and 21 degrees of freedom).    The F-ratio for instruments (57. 37) 
is also quite highly significant (F   .    = 12. 25 for 1 and 7 degrees of 

freedom),  as is the F-ratio for interaction between blades and instru- 
ments (30. 79 as compared with F  Q. =4. 87 for 3 and 21 degrees of 

freedom).    The F-ratios for operators and for their interactions with 
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blades and with instruments are non-significant,  which indicates that 
differences in operators produce little if any effect,  either alone or 
in conjunction with other factors. 

The question now arises as to whether the data of Table 13. 1 (or 
more properly the population(s) from which they come) satisfy the 
basic assumptions underlying the analysis of variance.    Even a casual 
glance at the data is enough to convince an unbiased observer that the 
answer to this question is almost certainly in the negative.    As one 
indication of this,   consider the range of the observations for the vari- 
ous blades,   which are given in Table 13. 6,  along with the range after 
applying three commonly used transformations. 

Table 13. 6 

Range of Observations 

Blade        Original Data Square Roots Logarithms        Reciprocals 

1 3. 10 0.61 0.21 . 077 
2 0. 10 0.08 0. 12 . 833 
3 0. 15 0. 12 0. 17 1. Ill 
4 11. 00 1.01 0. 16 . 015 

The range for the original data shows- a high degree of heterogeneity. 
This has been reduced somewhat in the case of the square roots, but a 
more powerful transformation appears to be needed.    The reciprocal 
transformation,  on the other hand,   is easily seen to be too powerful. 
The range of the logarithms shows no more heterogeneity than one 
might expect by chance.    If one assumes that the standard deviation is 
proportional to the range,  the Cochran test shows no significant hetero- 
geneity.    Thus the logarithmic transformation appears to be appropriate 
from the standpoint of homogeneity of variance. 

The need for a transformation can also be demonstrated by applying 
Tukey's test of non-additivity. Results of this test applied to the origi- 
nal data and to the logarithms of the original data will be shown in 
Table 13. 9. First, however, it is necessary to transform the data and 
analyze the transformed data. The common logarithms (rounded to two 
decimal places) of the original data are shown in Table 13. 7. 
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Table 13. 7 

Logarithms of Original Data (Table 13. 1) 
Voltage 

Blade  Instrument       12 3 4 5 6 

1 
500 1.88 1.90 1.91 1.90 1.88 1.90 1.90 1.90 

1000 1.78 1.70 1.79 1.76 1.78 1.78 1.76 1.70 

2 
500 0.48 0.48 0.49 0.49 0.48 0.49 0.48 0.48 

1000 0.48 0.48 0.48 0.48 0. 60 0.54 0. 54 0.48 

3 
500 0.49 0.49 0.48 0.60 0. 54 0.52 0.51 0.49 

1000 0.48 0.65 0.48 0.48 0. 54 0.54 0.54 0.48 

4 
500 2. 54 2.51 2.48 2. 51 2. 51 2. 51 2.54 2. 52 

1000 2.43 2.40 2.49 2. 38 2.40 2.40 2.41 2.40 

The transformed data in Table 13. 7 are analyzed with the aid of 
three auxiliary two-way tables (not shown here) analogous to Tables 13.2, 
13. 3 and 13.4 for the original data. The mode of computing the sums of 
squares is the same as for the original data.    The analysis of variance 
and the resulting F-tests are given in Table 13. 8.    As in Table 13. 5, 
effects not involving operators are tested by their interaction with 
operators,  and all effects involving operators are tested by discrepance. 

Table 13. 8 

Analysis of Variance for Transformed Data (Table 13. 7) 

Source of Variation SS DF MS F 

Blades(B) 46.1478 3 15.3826 13,984 
Instruments (I) 0. 0425 1 0.0425 30. 36 
Operators (O) 0. 0065 7 0.0009 0. 60 
Bxl 0. 0799 3 0. 0266 17.73 
BxO 0. 0230 21 0. 0011 0. 73 
IxO 0. 0101 7 0.0014 0.93 
Discrepance 0. 0310 21 0.0015 
Total 46.3408 ~6T 

The same effects are found to be significant as in the analysis of 
the original data,  but it should not be concluded from this fact that no 
transformation is necessary.    The F-ratio for blades is more than three 
times as large as for the original data,  and the F-ratios for instruments 
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and for interaction between blades and instruments are little more 
than half as large.    If they had been near the critical values,   differences 
in the conclusions might well have resulted.    Furthermore,   if indi- 
vidual comparisons are to be made following the analysis of variance,  a 
pooled estimate s^ on a scale where the dispersions of the groups vary 
as much as in the original data (see Table  13. 6) is not appropriate. 
The pooled s^ = 0.6856 used for testing blade differences in Table 13. 5 
is much too large for comparing blades 2 and 3,  which have small 
dispersions,  and much too small for comparing blades 1 and 4,  which 
have large dispersions. 

Now consider the question of additivity,  as measured by Tukey's 
test.    The sums of squares for discrepance in Tables 13. 5 and 13. 8 
can each be broken down or decomposed into a sum of squares (or 
mean square,   since it has but a single degree of freedom) for non- 
additivity and a residual sum of squares.    The sums of squares for non- 
additivity in the three-way tables (Table 13. 1 and 13. 7) are computed 
by use of the formula for a three-factor experiment given on page 47. 
Similarly,  the sums of squares for Bxl,  BxO,   and IxO can be decomposed. 
The sums of squares for non-additivity in the auxiliary two-way tables 
(Tables 13. 2-13.4 and their analogues formed from Table 13. 7) are 
computed by use of the formula for a two-factor experiment given on 
page 46,   with the proper adjustment for the number of observations 
upon which each item in the table is based.    In each case the test for 
non-additivity is made by dividing the mean square for non-additivity 
by the residual mean square and comparing the result with the 5 per 
cent and 1 per cent points of the F-distribution with 1 degree of freedom 
for the numerator and the proper number for the denominator.    The 
results of applying these tests to the original data and to the transformed 
data are given in Table  13. 9.     Two of the F-ratios for non-additivity 
are significant (one at the  1 per cent level and the other at the 5 per cent 
level) for the original data.    None of the F-ratios for the transformed 
data is significant.    Hence, from the point of view of both homogeneity 
of variance and additivity of effects,  the logarithmic transformation is 
appropriate for these data. 

Now consider the application of the Newman-Keuls procedure to 
make individual comparisons of the blade means and the interactions 
between blades and instruments.    Since there are only two instruments, 
the F-test tells the whole story about them,   and the main effect of 
operators and interactions involving operators are not significant,   so 
no individual comparisons are made for these effects.    The proper 
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scale for making the individual comparisons is the logarithmic scale, 
but they will be made also on the original scale in order to demon- 
strate the differences in the results. 

Table 13.9 

 Results of Tukey's Test on Non-additivity 
Interaction F for non-additivity Critical values 
Decomposed O riginal data L< Dgarithms F.05 F. 01 
Discrepance 2.28 0.80 4.35 8. 10 

Bxl 259. 8.44 18.51 98.49 
BxO 4.66 1.08 4.35 8. 10 
IxO 1.36 4. 10 5. 59 12.25 

Since the interaction between blades and operators (BxO) is used in 
testing the effect of blades,  the mean square for BxO will be taken as 
the estimate s    of the variance within blades, which is used in computing 
the standard error of the mean for blades.    Thus the standard error of 
this mean,   s— ,  is given by 

s- =W 0. 6856/16  = ^.04285    = 0. 207      (Original data) 

~\l 0. 0011/16 = \] . 0000688  = 0. 00829 (Logarithms) 

Multiplying these values by the 5 per cent and 1 per cent critical values 
for the studentized range of p observations (p = 2,   3,  4) with 21 degrees 
of freedom for s^,  one finds the critical differences between blade means 
required for significance by the Newman-Keuls procedure.     These 
critical differences and the resulting tests are shown in Tables 13. 10 
(original data) and Table 13. 11 (logarithms).     Both analyses show that 
all pairs of blade means differ significantly except the means for blades 
2 and 3.    Actually, the difference between blades 2 and 3 is just short 
of significance at the 5 per cent level (0. 023 as compared with ISD  n    = 

. 05 
0. 024 on the logarithmic scale).    The principal difficulty with the analysis 
on the original scale is that the pooled estimate of variances which are 
heterogeneous is much too large to use in testing the significance of the 
difference between blades 2 and 3, both of which have small variances, 
and hence greatly underestimates the significance of this difference. 
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Table 13. 10 

Individual Comparisons of Blade Means (Original Data) 
Significance Critical Difference ISDa         Mean for Blade r 
Level (a) p = 2       P = 3      p = 4        r=2     r=3        r = l     r = 4 

5% 
1% 

0.61        0.74      0.82          0.31     0.33          6.80    29.31 
0.83        0.95      1.03         0.31     0.33         6.80    29.31 

Table 13. 11 

Individual Comparisons of Blade Means (Logarithms) 
Significance Critical Difference ISDG          Mean for Blade r 
Level (a) p = 2       P = 3       p = 4        r = 2     r = 3 r = 1     r = 4 

5% 
1% 

0.024    0.030      0.033      0.497    0.520 
0.033    0.038     0.041      0.497    0.520 

1.826    2.465 
1.826    2.465 

The interaction of blades r and s (r, s = 1,   2,   3,  4; r^ s) with instru- 
ments 1 and 2 will be designated by 

(Ij  - I2)(Br -Bs) = (lx - I2)Br - (IX - I2)BS   . 

The interaction element (I    - 1^) Br is defined as the mean of the readings 

on blade r using instrument 1 minus the mean of the   readings on blade r 
using instrument 2.    For example,   on the original scale, 

(I    - I  ) B4 = (261. 00 - 208. 00)/8 = 6. 625. 

Since discrepance is used in testing the interaction between blades 
and instruments,  the mean square for discrepance will be taken as the 
estimate s    of the variance within blade-instrument combinations,  which 
is used in computing the standard error of the interaction element.    This 
standard error,   s-r ,   is the standard error of the difference between the 

means of two samples each of size 8.    Hence the standard error is given 
by 

s_ = \T2(1.2728)/8=   N/0. 3182       =  0.564    (Original data) 
d 

s^ = sfZ(0. 0015)/8 = \l 0. 000375 =   0.0194   (Logarithms) 
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Multiplying these values by the 5 per cent and 1 per cent critical 
values for the studentized range of p observations (p = 2,   3, 4) with 
21 degrees of freedom for s^,   one finds the critical interactions of 
blades with instruments required for significance by the Newman- 
Keuls procedure.    These critical interactions and the resulting tests 
are shown in Table 13. 12 (original data) and Table 13. 13 (logarithms). 

Table 13. 12 
Individual Comparisons of Blade-Instrument Interaction Elements 

(Original Data) 
Significance 
Level (a) 

Critical Difference ISDQ   Interaction Element (I. -I2)Br 

p=2      p=3      p=4           r=2        r=3        r=l        r=4 
5% 
1% 

1.658    2.008    2.222        -0.021     -0.009       2.181      6.625 
2.256    2.600    2.814        -0.021     -0.009       2.181      3.312 

Table 13. 13 

Individual Comparisons of Blade-Instrument Interaction Elements 

(Logarithms) 
Significance 
Level (a) , 

Critical Difference ISDQ 

p=2      P=3      p=4 

Interaction Element (I.- 

r=2      r=3        r=4 
•I2)Br 

r = 1 

5% 

1% 

.0568    .0688    .0762 

.0774    .0892     .0966 
-. 0262   -.0088     . 1012 
-.0262   -.0088     . 1012 

. 1400 

. 1400 

The analysis of the original data shows no significant difference at the 
1 per cent level between the interaction element of instruments with 
blade 1 and the interaction elements of instruments with blades 2 and 3; 
that is, at the 1 per cent level,  it shows no significant interaction of 
instruments with blades 1 and 2 or with blades 1 and 3.    The true 
perspective on this situation is given by the analysis of the transformed 
data,  where the resistance of blades 1 and 4 is found to be much higher 
when measured by the 1000-volt megger than when measured by the 
500-volt megger,   while the resistance of blades 2 and 3 is slightly lower 
when measured by the 1000-volt megger than when measured by the 500- 
volt megger.    The difference between the resistances found by the two 
instruments is greater for blade 1 than for blade 4 when measured on 
the logarithmic scale,  corresponding to the fact that the ratio of the 
resistances is greater for blade 1 than for blade 4 on the original scale. 
(The difference of the logarithms of two numbers is the logarithm of 
their ratio. ) 
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